Description: The absolute value of a nonzero number is positive. (Contributed by NM, 1-Oct-1999) (Proof shortened by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | absgt0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ 0 < ( abs ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℝ ) | |
2 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
3 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
4 | 1 2 3 | leltned | ⊢ ( 𝐴 ∈ ℂ → ( 0 < ( abs ‘ 𝐴 ) ↔ ( abs ‘ 𝐴 ) ≠ 0 ) ) |
5 | abs00 | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) | |
6 | 5 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
7 | 4 6 | bitr2d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ 0 < ( abs ‘ 𝐴 ) ) ) |