Metamath Proof Explorer


Theorem absgt0

Description: The absolute value of a nonzero number is positive. (Contributed by NM, 1-Oct-1999) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absgt0 ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ 0 < ( abs ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 0red ( 𝐴 ∈ ℂ → 0 ∈ ℝ )
2 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
3 absge0 ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) )
4 1 2 3 leltned ( 𝐴 ∈ ℂ → ( 0 < ( abs ‘ 𝐴 ) ↔ ( abs ‘ 𝐴 ) ≠ 0 ) )
5 abs00 ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) )
6 5 necon3bid ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) )
7 4 6 bitr2d ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ 0 < ( abs ‘ 𝐴 ) ) )