Description: Commuted inner products have the same absolute values. (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abshicom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-his1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) ) | 
| 3 | hicl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) ∈ ℂ ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) ∈ ℂ ) | 
| 5 | 4 | abscjd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) = ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ) | 
| 6 | 2 5 | eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ) |