| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
absval |
⊢ ( i ∈ ℂ → ( abs ‘ i ) = ( √ ‘ ( i · ( ∗ ‘ i ) ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( abs ‘ i ) = ( √ ‘ ( i · ( ∗ ‘ i ) ) ) |
| 4 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
| 5 |
4
|
oveq2i |
⊢ ( i · ( ∗ ‘ i ) ) = ( i · - i ) |
| 6 |
1 1
|
mulneg2i |
⊢ ( i · - i ) = - ( i · i ) |
| 7 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 8 |
7
|
negeqi |
⊢ - ( i · i ) = - - 1 |
| 9 |
|
negneg1e1 |
⊢ - - 1 = 1 |
| 10 |
8 9
|
eqtri |
⊢ - ( i · i ) = 1 |
| 11 |
5 6 10
|
3eqtri |
⊢ ( i · ( ∗ ‘ i ) ) = 1 |
| 12 |
11
|
fveq2i |
⊢ ( √ ‘ ( i · ( ∗ ‘ i ) ) ) = ( √ ‘ 1 ) |
| 13 |
|
sqrt1 |
⊢ ( √ ‘ 1 ) = 1 |
| 14 |
3 12 13
|
3eqtri |
⊢ ( abs ‘ i ) = 1 |