Metamath Proof Explorer


Theorem absid

Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absid ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ )
2 1 recnd ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ )
3 absval ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
4 2 3 syl ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
5 1 cjred ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∗ ‘ 𝐴 ) = 𝐴 )
6 5 oveq2d ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · 𝐴 ) )
7 2 sqvald ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )
8 6 7 eqtr4d ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( 𝐴 ↑ 2 ) )
9 8 fveq2d ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( √ ‘ ( 𝐴 ↑ 2 ) ) )
10 sqrtsq ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 )
11 4 9 10 3eqtrd ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 )