Description: The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | absidm | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
2 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
3 | absid | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |