Step |
Hyp |
Ref |
Expression |
1 |
|
absimlere.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
absimlere.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
4 |
1 3
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
5 |
|
absimle |
⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
7 |
1 3
|
imsubd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
8 |
2
|
reim0d |
⊢ ( 𝜑 → ( ℑ ‘ 𝐵 ) = 0 ) |
9 |
8
|
oveq2d |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − 0 ) ) |
10 |
1
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
12 |
11
|
subid1d |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
13 |
7 9 12
|
3eqtrrd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ) |
15 |
3 1
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
16 |
6 14 15
|
3brtr4d |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |