| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							absimlere.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							absimlere.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								2
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							absimle | 
							⊢ ( ( 𝐴  −  𝐵 )  ∈  ℂ  →  ( abs ‘ ( ℑ ‘ ( 𝐴  −  𝐵 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( 𝐴  −  𝐵 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							imsubd | 
							⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) ) )  | 
						
						
							| 8 | 
							
								2
							 | 
							reim0d | 
							⊢ ( 𝜑  →  ( ℑ ‘ 𝐵 )  =  0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  =  ( ( ℑ ‘ 𝐴 )  −  0 ) )  | 
						
						
							| 10 | 
							
								1
							 | 
							imcld | 
							⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 11 | 
							
								10
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 12 | 
							
								11
							 | 
							subid1d | 
							⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐴 )  −  0 )  =  ( ℑ ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								7 9 12
							 | 
							3eqtrrd | 
							⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  =  ( ℑ ‘ ( 𝐴  −  𝐵 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  =  ( abs ‘ ( ℑ ‘ ( 𝐴  −  𝐵 ) ) ) )  | 
						
						
							| 15 | 
							
								3 1
							 | 
							abssubd | 
							⊢ ( 𝜑  →  ( abs ‘ ( 𝐵  −  𝐴 ) )  =  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  | 
						
						
							| 16 | 
							
								6 14 15
							 | 
							3brtr4d | 
							⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ≤  ( abs ‘ ( 𝐵  −  𝐴 ) ) )  |