Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Ordering on real numbers - Real and complex numbers basic operations
absimnre
Metamath Proof Explorer
Description: The absolute value of the imaginary part of a non-real, complex number,
is strictly positive. (Contributed by Glauco Siliprandi , 5-Feb-2022)
Ref
Expression
Hypotheses
absimnre.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
absimnre.2
⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ )
Assertion
absimnre
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ )
Proof
Step
Hyp
Ref
Expression
1
absimnre.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
2
absimnre.2
⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ )
3
1
imcld
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ )
4
3
recnd
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ )
5
reim0b
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) )
6
1 5
syl
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) )
7
2 6
mtbid
⊢ ( 𝜑 → ¬ ( ℑ ‘ 𝐴 ) = 0 )
8
7
neqned
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ≠ 0 )
9
4 8
absrpcld
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ )