Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Glauco Siliprandi  
				Ordering on real numbers - Real and complex numbers basic operations  
				absimnre  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   The absolute value of the imaginary part of a non-real, complex number,
       is strictly positive.  (Contributed by Glauco Siliprandi , 5-Feb-2022) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						absimnre.1  
						⊢  ( 𝜑   →  𝐴   ∈  ℂ )  
					 
					
						 
						 
						absimnre.2  
						⊢  ( 𝜑   →  ¬  𝐴   ∈  ℝ )  
					 
				
					 
					Assertion 
					absimnre  
					⊢   ( 𝜑   →  ( abs ‘ ( ℑ ‘ 𝐴  ) )  ∈  ℝ+  )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							absimnre.1  
							⊢  ( 𝜑   →  𝐴   ∈  ℂ )  
						 
						
							2  
							
								
							 
							absimnre.2  
							⊢  ( 𝜑   →  ¬  𝐴   ∈  ℝ )  
						 
						
							3  
							
								1 
							 
							imcld  
							⊢  ( 𝜑   →  ( ℑ ‘ 𝐴  )  ∈  ℝ )  
						 
						
							4  
							
								3 
							 
							recnd  
							⊢  ( 𝜑   →  ( ℑ ‘ 𝐴  )  ∈  ℂ )  
						 
						
							5  
							
								
							 
							reim0b  
							⊢  ( 𝐴   ∈  ℂ  →  ( 𝐴   ∈  ℝ  ↔  ( ℑ ‘ 𝐴  )  =  0 ) )  
						 
						
							6  
							
								1  5 
							 
							syl  
							⊢  ( 𝜑   →  ( 𝐴   ∈  ℝ  ↔  ( ℑ ‘ 𝐴  )  =  0 ) )  
						 
						
							7  
							
								2  6 
							 
							mtbid  
							⊢  ( 𝜑   →  ¬  ( ℑ ‘ 𝐴  )  =  0 )  
						 
						
							8  
							
								7 
							 
							neqned  
							⊢  ( 𝜑   →  ( ℑ ‘ 𝐴  )  ≠  0 )  
						 
						
							9  
							
								4  8 
							 
							absrpcld  
							⊢  ( 𝜑   →  ( abs ‘ ( ℑ ‘ 𝐴  ) )  ∈  ℝ+  )