| Step |
Hyp |
Ref |
Expression |
| 1 |
|
absvalsq |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 3 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 6 |
5
|
sqvald |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
| 7 |
2 6
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) = ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 10 |
9
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 11 |
|
abs00 |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 12 |
11
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 13 |
12
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 14 |
9 10 5 13
|
div23d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) = ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) |
| 15 |
5 5 13
|
divcan3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 16 |
8 14 15
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( ∗ ‘ ( abs ‘ 𝐴 ) ) ) |
| 18 |
9 5 13
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 19 |
18 10
|
cjmuld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 20 |
9
|
cjcjd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
| 21 |
20
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) ) |
| 22 |
19 21
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) ) |
| 23 |
4
|
cjred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 24 |
17 22 23
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 25 |
24 16
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) + ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) ) |
| 26 |
5
|
2timesd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 2 · ( abs ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) ) |
| 27 |
25 26
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) + ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |