| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  π  ∈  ℝ ) | 
						
							| 3 | 2 | renegcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  - π  ∈  ℝ ) | 
						
							| 4 |  | logcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 | 4 | imcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 6 |  | logimcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 8 | 3 5 7 | ltled | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 9 | 6 | simprd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) | 
						
							| 10 | 5 2 | absled | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π  ↔  ( - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) ) ) | 
						
							| 11 | 8 9 10 | mpbir2and | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) |