| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 2 |
1
|
renegcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → - 𝐴 ∈ ℝ ) |
| 3 |
1
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 4 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
3 4
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 7 |
|
leabs |
⊢ ( - 𝐴 ∈ ℝ → - 𝐴 ≤ ( abs ‘ - 𝐴 ) ) |
| 8 |
2 7
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → - 𝐴 ≤ ( abs ‘ - 𝐴 ) ) |
| 9 |
|
absneg |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 10 |
3 9
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 11 |
8 10
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → - 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) |
| 13 |
2 5 6 11 12
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → - 𝐴 < 𝐵 ) |
| 14 |
|
leabs |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 16 |
1 5 6 15 12
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 < 𝐵 ) |
| 17 |
13 16
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) ) |
| 18 |
17
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 → ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) ) ) |
| 19 |
|
absor |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 21 |
|
breq1 |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ 𝐴 < 𝐵 ) ) |
| 22 |
21
|
biimprd |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 < 𝐵 → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 23 |
|
breq1 |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ - 𝐴 < 𝐵 ) ) |
| 24 |
23
|
biimprd |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( - 𝐴 < 𝐵 → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 25 |
22 24
|
jaoa |
⊢ ( ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( ( 𝐴 < 𝐵 ∧ - 𝐴 < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 26 |
25
|
ancomsd |
⊢ ( ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 27 |
20 26
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 28 |
18 27
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) ) ) |
| 29 |
|
ltnegcon1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 < 𝐵 ↔ - 𝐵 < 𝐴 ) ) |
| 30 |
29
|
anbi1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) ↔ ( - 𝐵 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
| 31 |
28 30
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |