Metamath Proof Explorer


Theorem abslti

Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005)

Ref Expression
Hypotheses sqrtthi.1 𝐴 ∈ ℝ
sqr11.1 𝐵 ∈ ℝ
Assertion abslti ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴𝐴 < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sqrtthi.1 𝐴 ∈ ℝ
2 sqr11.1 𝐵 ∈ ℝ
3 abslt ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴𝐴 < 𝐵 ) ) )
4 1 2 3 mp2an ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴𝐴 < 𝐵 ) )