| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝐴 = ( abs ‘ 𝐴 ) → ( 𝐴 mod 𝐵 ) = ( ( abs ‘ 𝐴 ) mod 𝐵 ) ) |
| 2 |
1
|
eqcoms |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 mod 𝐵 ) = ( ( abs ‘ 𝐴 ) mod 𝐵 ) ) |
| 3 |
2
|
eqeq1d |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) |
| 4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) ) |
| 5 |
|
negmod0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) |
| 6 |
|
oveq1 |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) mod 𝐵 ) = ( - 𝐴 mod 𝐵 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) |
| 8 |
7
|
bibi2d |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ↔ ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) ) |
| 9 |
5 8
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) ) |
| 10 |
|
absor |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 12 |
4 9 11
|
mpjaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) |