Step |
Hyp |
Ref |
Expression |
1 |
|
cjmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) |
2 |
1
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 · 𝐵 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
5 |
3
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
6 |
4
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
7 |
3 4 5 6
|
mul4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
8 |
2 7
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( √ ‘ ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) ) = ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
10 |
|
cjmulrcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) |
11 |
|
cjmulge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
12 |
10 11
|
jca |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
13 |
|
cjmulrcl |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ∈ ℝ ) |
14 |
|
cjmulge0 |
⊢ ( 𝐵 ∈ ℂ → 0 ≤ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) |
15 |
13 14
|
jca |
⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
16 |
|
sqrtmul |
⊢ ( ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∧ ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) → ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
17 |
12 15 16
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
18 |
9 17
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( √ ‘ ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
19 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
20 |
|
absval |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( √ ‘ ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( √ ‘ ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
22 |
|
absval |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
23 |
|
absval |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) = ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
24 |
22 23
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
25 |
18 21 24
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |