Metamath Proof Explorer


Theorem absn

Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 . (Contributed by Andrew Salmon, 30-Jun-2011) (Revised by AV, 24-Aug-2022)

Ref Expression
Assertion absn ( { 𝑥𝜑 } = { 𝑌 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 df-sn { 𝑌 } = { 𝑥𝑥 = 𝑌 }
2 1 eqeq2i ( { 𝑥𝜑 } = { 𝑌 } ↔ { 𝑥𝜑 } = { 𝑥𝑥 = 𝑌 } )
3 abbi ( ∀ 𝑥 ( 𝜑𝑥 = 𝑌 ) ↔ { 𝑥𝜑 } = { 𝑥𝑥 = 𝑌 } )
4 2 3 bitr4i ( { 𝑥𝜑 } = { 𝑌 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑌 ) )