| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjneg |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) = ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) ) |
| 3 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 4 |
|
mul2neg |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 5 |
3 4
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 6 |
2 5
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 8 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 9 |
|
absval |
⊢ ( - 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) ) |
| 11 |
|
absval |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 12 |
7 10 11
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |