Metamath Proof Explorer


Theorem absneg

Description: Absolute value of the opposite. (Contributed by NM, 27-Feb-2005)

Ref Expression
Assertion absneg ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 cjneg ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) )
2 1 oveq2d ( 𝐴 ∈ ℂ → ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) = ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) )
3 cjcl ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ )
4 mul2neg ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
5 3 4 mpdan ( 𝐴 ∈ ℂ → ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
6 2 5 eqtrd ( 𝐴 ∈ ℂ → ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
7 6 fveq2d ( 𝐴 ∈ ℂ → ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
8 negcl ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ )
9 absval ( - 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) )
10 8 9 syl ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) )
11 absval ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
12 7 10 11 3eqtr4d ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) )