Metamath Proof Explorer


Theorem absneu

Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006)

Ref Expression
Assertion absneu ( ( 𝐴𝑉 ∧ { 𝑥𝜑 } = { 𝐴 } ) → ∃! 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 sneq ( 𝑦 = 𝐴 → { 𝑦 } = { 𝐴 } )
2 1 eqeq2d ( 𝑦 = 𝐴 → ( { 𝑥𝜑 } = { 𝑦 } ↔ { 𝑥𝜑 } = { 𝐴 } ) )
3 2 spcegv ( 𝐴𝑉 → ( { 𝑥𝜑 } = { 𝐴 } → ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } ) )
4 3 imp ( ( 𝐴𝑉 ∧ { 𝑥𝜑 } = { 𝐴 } ) → ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )
5 euabsn2 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )
6 4 5 sylibr ( ( 𝐴𝑉 ∧ { 𝑥𝜑 } = { 𝐴 } ) → ∃! 𝑥 𝜑 )