Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absneu | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∣ 𝜑 } = { 𝐴 } ) → ∃! 𝑥 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝑦 = 𝐴 → { 𝑦 } = { 𝐴 } ) | |
| 2 | 1 | eqeq2d | ⊢ ( 𝑦 = 𝐴 → ( { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ { 𝑥 ∣ 𝜑 } = { 𝐴 } ) ) | 
| 3 | 2 | spcegv | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∣ 𝜑 } = { 𝐴 } → ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) ) | 
| 4 | 3 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∣ 𝜑 } = { 𝐴 } ) → ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) | 
| 5 | euabsn2 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∣ 𝜑 } = { 𝐴 } ) → ∃! 𝑥 𝜑 ) |