Metamath Proof Explorer


Theorem absnid

Description: A negative number is the negative of its own absolute value. (Contributed by NM, 27-Feb-2005)

Ref Expression
Assertion absnid ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 )

Proof

Step Hyp Ref Expression
1 le0neg1 ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) )
2 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
3 absneg ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) )
4 2 3 syl ( 𝐴 ∈ ℝ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) )
5 4 adantr ( ( 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) )
6 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
7 absid ( ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( abs ‘ - 𝐴 ) = - 𝐴 )
8 6 7 sylan ( ( 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( abs ‘ - 𝐴 ) = - 𝐴 )
9 5 8 eqtr3d ( ( 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( abs ‘ 𝐴 ) = - 𝐴 )
10 9 ex ( 𝐴 ∈ ℝ → ( 0 ≤ - 𝐴 → ( abs ‘ 𝐴 ) = - 𝐴 ) )
11 1 10 sylbid ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 → ( abs ‘ 𝐴 ) = - 𝐴 ) )
12 11 imp ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 )