| Step |
Hyp |
Ref |
Expression |
| 1 |
|
le0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
| 2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 3 |
|
absneg |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 6 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 7 |
|
absid |
⊢ ( ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( abs ‘ - 𝐴 ) = - 𝐴 ) |
| 8 |
6 7
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( abs ‘ - 𝐴 ) = - 𝐴 ) |
| 9 |
5 8
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
| 10 |
9
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ - 𝐴 → ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 11 |
1 10
|
sylbid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 → ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 12 |
11
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |