Step |
Hyp |
Ref |
Expression |
1 |
|
absproddvds.s |
⊢ ( 𝜑 → 𝑍 ⊆ ℤ ) |
2 |
|
absproddvds.f |
⊢ ( 𝜑 → 𝑍 ∈ Fin ) |
3 |
|
absproddvds.p |
⊢ 𝑃 = ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) |
4 |
2 1
|
fproddvdsd |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ∏ 𝑧 ∈ 𝑍 𝑧 ) |
5 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ℤ ) |
6 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ ℤ ) |
7 |
2 6
|
fprodzcl |
⊢ ( 𝜑 → ∏ 𝑧 ∈ 𝑍 𝑧 ∈ ℤ ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∏ 𝑧 ∈ 𝑍 𝑧 ∈ ℤ ) |
9 |
|
dvdsabsb |
⊢ ( ( 𝑚 ∈ ℤ ∧ ∏ 𝑧 ∈ 𝑍 𝑧 ∈ ℤ ) → ( 𝑚 ∥ ∏ 𝑧 ∈ 𝑍 𝑧 ↔ 𝑚 ∥ ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ) ) |
10 |
5 8 9
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 ∥ ∏ 𝑧 ∈ 𝑍 𝑧 ↔ 𝑚 ∥ ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ) ) |
11 |
10
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 ∥ ∏ 𝑧 ∈ 𝑍 𝑧 → 𝑚 ∥ ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ) ) |
12 |
11
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ∏ 𝑧 ∈ 𝑍 𝑧 → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ) ) |
13 |
4 12
|
mpd |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ) |
14 |
3
|
breq2i |
⊢ ( 𝑚 ∥ 𝑃 ↔ 𝑚 ∥ ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ) |
15 |
14
|
ralbii |
⊢ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑃 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ) |
16 |
13 15
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑃 ) |