Metamath Proof Explorer


Theorem absproddvds

Description: The absolute value of the product of the elements of a finite subset of the integers is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)

Ref Expression
Hypotheses absproddvds.s ( 𝜑𝑍 ⊆ ℤ )
absproddvds.f ( 𝜑𝑍 ∈ Fin )
absproddvds.p 𝑃 = ( abs ‘ ∏ 𝑧𝑍 𝑧 )
Assertion absproddvds ( 𝜑 → ∀ 𝑚𝑍 𝑚𝑃 )

Proof

Step Hyp Ref Expression
1 absproddvds.s ( 𝜑𝑍 ⊆ ℤ )
2 absproddvds.f ( 𝜑𝑍 ∈ Fin )
3 absproddvds.p 𝑃 = ( abs ‘ ∏ 𝑧𝑍 𝑧 )
4 2 1 fproddvdsd ( 𝜑 → ∀ 𝑚𝑍 𝑚 ∥ ∏ 𝑧𝑍 𝑧 )
5 1 sselda ( ( 𝜑𝑚𝑍 ) → 𝑚 ∈ ℤ )
6 1 sselda ( ( 𝜑𝑧𝑍 ) → 𝑧 ∈ ℤ )
7 2 6 fprodzcl ( 𝜑 → ∏ 𝑧𝑍 𝑧 ∈ ℤ )
8 7 adantr ( ( 𝜑𝑚𝑍 ) → ∏ 𝑧𝑍 𝑧 ∈ ℤ )
9 dvdsabsb ( ( 𝑚 ∈ ℤ ∧ ∏ 𝑧𝑍 𝑧 ∈ ℤ ) → ( 𝑚 ∥ ∏ 𝑧𝑍 𝑧𝑚 ∥ ( abs ‘ ∏ 𝑧𝑍 𝑧 ) ) )
10 5 8 9 syl2anc ( ( 𝜑𝑚𝑍 ) → ( 𝑚 ∥ ∏ 𝑧𝑍 𝑧𝑚 ∥ ( abs ‘ ∏ 𝑧𝑍 𝑧 ) ) )
11 10 biimpd ( ( 𝜑𝑚𝑍 ) → ( 𝑚 ∥ ∏ 𝑧𝑍 𝑧𝑚 ∥ ( abs ‘ ∏ 𝑧𝑍 𝑧 ) ) )
12 11 ralimdva ( 𝜑 → ( ∀ 𝑚𝑍 𝑚 ∥ ∏ 𝑧𝑍 𝑧 → ∀ 𝑚𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑧𝑍 𝑧 ) ) )
13 4 12 mpd ( 𝜑 → ∀ 𝑚𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑧𝑍 𝑧 ) )
14 3 breq2i ( 𝑚𝑃𝑚 ∥ ( abs ‘ ∏ 𝑧𝑍 𝑧 ) )
15 14 ralbii ( ∀ 𝑚𝑍 𝑚𝑃 ↔ ∀ 𝑚𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑧𝑍 𝑧 ) )
16 13 15 sylibr ( 𝜑 → ∀ 𝑚𝑍 𝑚𝑃 )