| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							absproddvds.s | 
							⊢ ( 𝜑  →  𝑍  ⊆  ℤ )  | 
						
						
							| 2 | 
							
								
							 | 
							absproddvds.f | 
							⊢ ( 𝜑  →  𝑍  ∈  Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							absproddvds.p | 
							⊢ 𝑃  =  ( abs ‘ ∏ 𝑧  ∈  𝑍 𝑧 )  | 
						
						
							| 4 | 
							
								2 1
							 | 
							fproddvdsd | 
							⊢ ( 𝜑  →  ∀ 𝑚  ∈  𝑍 𝑚  ∥  ∏ 𝑧  ∈  𝑍 𝑧 )  | 
						
						
							| 5 | 
							
								1
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑚  ∈  ℤ )  | 
						
						
							| 6 | 
							
								1
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑍 )  →  𝑧  ∈  ℤ )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							fprodzcl | 
							⊢ ( 𝜑  →  ∏ 𝑧  ∈  𝑍 𝑧  ∈  ℤ )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ∏ 𝑧  ∈  𝑍 𝑧  ∈  ℤ )  | 
						
						
							| 9 | 
							
								
							 | 
							dvdsabsb | 
							⊢ ( ( 𝑚  ∈  ℤ  ∧  ∏ 𝑧  ∈  𝑍 𝑧  ∈  ℤ )  →  ( 𝑚  ∥  ∏ 𝑧  ∈  𝑍 𝑧  ↔  𝑚  ∥  ( abs ‘ ∏ 𝑧  ∈  𝑍 𝑧 ) ) )  | 
						
						
							| 10 | 
							
								5 8 9
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝑚  ∥  ∏ 𝑧  ∈  𝑍 𝑧  ↔  𝑚  ∥  ( abs ‘ ∏ 𝑧  ∈  𝑍 𝑧 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimpd | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝑚  ∥  ∏ 𝑧  ∈  𝑍 𝑧  →  𝑚  ∥  ( abs ‘ ∏ 𝑧  ∈  𝑍 𝑧 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ralimdva | 
							⊢ ( 𝜑  →  ( ∀ 𝑚  ∈  𝑍 𝑚  ∥  ∏ 𝑧  ∈  𝑍 𝑧  →  ∀ 𝑚  ∈  𝑍 𝑚  ∥  ( abs ‘ ∏ 𝑧  ∈  𝑍 𝑧 ) ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∀ 𝑚  ∈  𝑍 𝑚  ∥  ( abs ‘ ∏ 𝑧  ∈  𝑍 𝑧 ) )  | 
						
						
							| 14 | 
							
								3
							 | 
							breq2i | 
							⊢ ( 𝑚  ∥  𝑃  ↔  𝑚  ∥  ( abs ‘ ∏ 𝑧  ∈  𝑍 𝑧 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ralbii | 
							⊢ ( ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑃  ↔  ∀ 𝑚  ∈  𝑍 𝑚  ∥  ( abs ‘ ∏ 𝑧  ∈  𝑍 𝑧 ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑃 )  |