Metamath Proof Explorer


Theorem absprodnn

Description: The absolute value of the product of the elements of a finite subset of the integers not containing 0 is a poitive integer. (Contributed by AV, 21-Aug-2020)

Ref Expression
Hypotheses absproddvds.s ( 𝜑𝑍 ⊆ ℤ )
absproddvds.f ( 𝜑𝑍 ∈ Fin )
absproddvds.p 𝑃 = ( abs ‘ ∏ 𝑧𝑍 𝑧 )
absprodnn.z ( 𝜑 → 0 ∉ 𝑍 )
Assertion absprodnn ( 𝜑𝑃 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 absproddvds.s ( 𝜑𝑍 ⊆ ℤ )
2 absproddvds.f ( 𝜑𝑍 ∈ Fin )
3 absproddvds.p 𝑃 = ( abs ‘ ∏ 𝑧𝑍 𝑧 )
4 absprodnn.z ( 𝜑 → 0 ∉ 𝑍 )
5 1 sselda ( ( 𝜑𝑧𝑍 ) → 𝑧 ∈ ℤ )
6 2 5 fprodzcl ( 𝜑 → ∏ 𝑧𝑍 𝑧 ∈ ℤ )
7 5 zcnd ( ( 𝜑𝑧𝑍 ) → 𝑧 ∈ ℂ )
8 elnelne2 ( ( 𝑧𝑍 ∧ 0 ∉ 𝑍 ) → 𝑧 ≠ 0 )
9 8 expcom ( 0 ∉ 𝑍 → ( 𝑧𝑍𝑧 ≠ 0 ) )
10 4 9 syl ( 𝜑 → ( 𝑧𝑍𝑧 ≠ 0 ) )
11 10 imp ( ( 𝜑𝑧𝑍 ) → 𝑧 ≠ 0 )
12 2 7 11 fprodn0 ( 𝜑 → ∏ 𝑧𝑍 𝑧 ≠ 0 )
13 nnabscl ( ( ∏ 𝑧𝑍 𝑧 ∈ ℤ ∧ ∏ 𝑧𝑍 𝑧 ≠ 0 ) → ( abs ‘ ∏ 𝑧𝑍 𝑧 ) ∈ ℕ )
14 6 12 13 syl2anc ( 𝜑 → ( abs ‘ ∏ 𝑧𝑍 𝑧 ) ∈ ℕ )
15 3 14 eqeltrid ( 𝜑𝑃 ∈ ℕ )