Step |
Hyp |
Ref |
Expression |
1 |
|
absproddvds.s |
⊢ ( 𝜑 → 𝑍 ⊆ ℤ ) |
2 |
|
absproddvds.f |
⊢ ( 𝜑 → 𝑍 ∈ Fin ) |
3 |
|
absproddvds.p |
⊢ 𝑃 = ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) |
4 |
|
absprodnn.z |
⊢ ( 𝜑 → 0 ∉ 𝑍 ) |
5 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ ℤ ) |
6 |
2 5
|
fprodzcl |
⊢ ( 𝜑 → ∏ 𝑧 ∈ 𝑍 𝑧 ∈ ℤ ) |
7 |
5
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ ℂ ) |
8 |
|
elnelne2 |
⊢ ( ( 𝑧 ∈ 𝑍 ∧ 0 ∉ 𝑍 ) → 𝑧 ≠ 0 ) |
9 |
8
|
expcom |
⊢ ( 0 ∉ 𝑍 → ( 𝑧 ∈ 𝑍 → 𝑧 ≠ 0 ) ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 → 𝑧 ≠ 0 ) ) |
11 |
10
|
imp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ≠ 0 ) |
12 |
2 7 11
|
fprodn0 |
⊢ ( 𝜑 → ∏ 𝑧 ∈ 𝑍 𝑧 ≠ 0 ) |
13 |
|
nnabscl |
⊢ ( ( ∏ 𝑧 ∈ 𝑍 𝑧 ∈ ℤ ∧ ∏ 𝑧 ∈ 𝑍 𝑧 ≠ 0 ) → ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ∈ ℕ ) |
14 |
6 12 13
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ∈ ℕ ) |
15 |
3 14
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |