| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 3 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( i  ·  𝐵 )  ∈  ℂ ) | 
						
							| 5 | 2 3 4 | sylancr | ⊢ ( 𝐵  ∈  ℝ  →  ( i  ·  𝐵 )  ∈  ℂ ) | 
						
							| 6 |  | addcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( i  ·  𝐵 )  ∈  ℂ )  →  ( 𝐴  +  ( i  ·  𝐵 ) )  ∈  ℂ ) | 
						
							| 7 | 1 5 6 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  ( i  ·  𝐵 ) )  ∈  ℂ ) | 
						
							| 8 |  | abscl | ⊢ ( ( 𝐴  +  ( i  ·  𝐵 ) )  ∈  ℂ  →  ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 10 |  | absge0 | ⊢ ( ( 𝐴  +  ( i  ·  𝐵 ) )  ∈  ℂ  →  0  ≤  ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  0  ≤  ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) ) | 
						
							| 12 |  | sqrtsq | ⊢ ( ( ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) )  →  ( √ ‘ ( ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) ↑ 2 ) )  =  ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) ) | 
						
							| 13 | 9 11 12 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( √ ‘ ( ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) ↑ 2 ) )  =  ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) ) | 
						
							| 14 |  | absreimsq | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( √ ‘ ( ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) ) ↑ 2 ) )  =  ( √ ‘ ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 16 | 13 15 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( abs ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  ( √ ‘ ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) ) |