| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
sqge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) |
| 3 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 4 |
3
|
resqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 5 |
1
|
resqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 6 |
4 5
|
addge01d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 7 |
2 6
|
mpbid |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 8 |
3
|
sqge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) |
| 9 |
4 5
|
readdcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ) |
| 10 |
4 5 8 2
|
addge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 11 |
|
sqrtle |
⊢ ( ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ∧ ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ↔ ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) ) |
| 12 |
4 8 9 10 11
|
syl22anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ↔ ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) ) |
| 13 |
7 12
|
mpbid |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 14 |
|
absre |
⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) = ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 15 |
3 14
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) = ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 16 |
|
absval2 |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 17 |
13 15 16
|
3brtr4d |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) |