Step |
Hyp |
Ref |
Expression |
1 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
sqge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) |
3 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
4 |
3
|
resqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
5 |
1
|
resqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
6 |
4 5
|
addge01d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
7 |
2 6
|
mpbid |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
8 |
3
|
sqge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) |
9 |
4 5
|
readdcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ) |
10 |
4 5 8 2
|
addge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
11 |
|
sqrtle |
⊢ ( ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ∧ ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ↔ ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) ) |
12 |
4 8 9 10 11
|
syl22anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ↔ ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) ) |
13 |
7 12
|
mpbid |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ≤ ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
14 |
|
absre |
⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) = ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
15 |
3 14
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) = ( √ ‘ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
16 |
|
absval2 |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
17 |
13 15 16
|
3brtr4d |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) |