Metamath Proof Explorer


Theorem absresq

Description: Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006)

Ref Expression
Assertion absresq ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 cjre ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 )
2 1 oveq2d ( 𝐴 ∈ ℝ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · 𝐴 ) )
3 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
4 absvalsq ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
5 3 4 syl ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
6 3 sqvald ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )
7 2 5 6 3eqtr4d ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) )