| Step |
Hyp |
Ref |
Expression |
| 1 |
|
absval |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 4 |
3
|
cjmulrcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) |
| 5 |
3
|
cjmulge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 6 |
3
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 7 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
| 8 |
3 7
|
cjne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ≠ 0 ) |
| 9 |
3 6 7 8
|
mulne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ≠ 0 ) |
| 10 |
4 5 9
|
ne0gt0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 11 |
4 10
|
elrpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 12 |
|
rpsqrtcl |
⊢ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ+ → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 14 |
2 13
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |