Metamath Proof Explorer


Theorem abssexg

Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion abssexg ( 𝐴𝑉 → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )

Proof

Step Hyp Ref Expression
1 pwexg ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
2 df-pw 𝒫 𝐴 = { 𝑥𝑥𝐴 }
3 2 eleq1i ( 𝒫 𝐴 ∈ V ↔ { 𝑥𝑥𝐴 } ∈ V )
4 simpl ( ( 𝑥𝐴𝜑 ) → 𝑥𝐴 )
5 4 ss2abi { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥𝑥𝐴 }
6 ssexg ( ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥𝑥𝐴 } ∧ { 𝑥𝑥𝐴 } ∈ V ) → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )
7 5 6 mpan ( { 𝑥𝑥𝐴 } ∈ V → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )
8 3 7 sylbi ( 𝒫 𝐴 ∈ V → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )
9 1 8 syl ( 𝐴𝑉 → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )