Description: Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abssf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
Assertion | abssf | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
2 | 1 | abid2f | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 |
3 | 2 | sseq2i | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ { 𝑥 ∣ 𝜑 } ⊆ 𝐴 ) |
4 | ss2ab | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) ) | |
5 | 3 4 | bitr3i | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) ) |