Metamath Proof Explorer


Theorem abssi

Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006)

Ref Expression
Hypothesis abssi.1 ( 𝜑𝑥𝐴 )
Assertion abssi { 𝑥𝜑 } ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 abssi.1 ( 𝜑𝑥𝐴 )
2 1 ss2abi { 𝑥𝜑 } ⊆ { 𝑥𝑥𝐴 }
3 abid2 { 𝑥𝑥𝐴 } = 𝐴
4 2 3 sseqtri { 𝑥𝜑 } ⊆ 𝐴