Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abssi.1 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | |
Assertion | abssi | ⊢ { 𝑥 ∣ 𝜑 } ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | |
2 | 1 | ss2abi | ⊢ { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
3 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 | |
4 | 2 3 | sseqtri | ⊢ { 𝑥 ∣ 𝜑 } ⊆ 𝐴 |