Metamath Proof Explorer


Theorem abssinbd

Description: Bound for the absolute value of the sine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion abssinbd ( 𝐴 ∈ ℝ → ( abs ‘ ( sin ‘ 𝐴 ) ) ≤ 1 )

Proof

Step Hyp Ref Expression
1 sinbnd ( 𝐴 ∈ ℝ → ( - 1 ≤ ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) ≤ 1 ) )
2 resincl ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ )
3 1red ( 𝐴 ∈ ℝ → 1 ∈ ℝ )
4 2 3 absled ( 𝐴 ∈ ℝ → ( ( abs ‘ ( sin ‘ 𝐴 ) ) ≤ 1 ↔ ( - 1 ≤ ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) ≤ 1 ) ) )
5 1 4 mpbird ( 𝐴 ∈ ℝ → ( abs ‘ ( sin ‘ 𝐴 ) ) ≤ 1 )