Description: Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abssubge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 3 | subge0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ ( 𝐵 − 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) | |
| 4 | 3 | biimp3ar | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ ( 𝐵 − 𝐴 ) ) |
| 5 | absid | ⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 − 𝐴 ) ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 7 | 6 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |