Metamath Proof Explorer
Description: Absolute value of a nonnegative difference. (Contributed by Mario
Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
absltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
absltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
abssubge0d.2 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
Assertion |
abssubge0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
absltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
absltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
abssubge0d.2 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
abssubge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |