Metamath Proof Explorer
Description: Swapping order of subtraction doesn't change the absolute value.
Example of Apostol p. 363. (Contributed by NM, 1-Oct-1999)
|
|
Ref |
Expression |
|
Hypotheses |
absvalsqi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
abssub.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
abssubi |
⊢ ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
absvalsqi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
abssub.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
abssub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) |