Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ∈ ℂ ) |
3 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 ∈ ℂ ) |
4 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
6 |
|
abscl |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) ∈ ℝ ) |
7 |
2 6
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
8 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) |
9 |
|
leabs |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ ( abs ‘ 𝐵 ) ) |
10 |
1 9
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ≤ ( abs ‘ 𝐵 ) ) |
11 |
5 1 7 8 10
|
ltletrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) < ( abs ‘ 𝐵 ) ) |
12 |
5 11
|
gtned |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐵 ) ≠ ( abs ‘ 𝐴 ) ) |
13 |
|
fveq2 |
⊢ ( 𝐵 = 𝐴 → ( abs ‘ 𝐵 ) = ( abs ‘ 𝐴 ) ) |
14 |
13
|
necon3i |
⊢ ( ( abs ‘ 𝐵 ) ≠ ( abs ‘ 𝐴 ) → 𝐵 ≠ 𝐴 ) |
15 |
12 14
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ≠ 𝐴 ) |
16 |
2 3 15
|
subne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
17 |
16
|
3impa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |