Metamath Proof Explorer


Theorem abssubrp

Description: The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion abssubrp ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐴𝐵 ) ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 subcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝐵 ) ∈ ℂ )
2 1 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴𝐵 ) → ( 𝐴𝐵 ) ∈ ℂ )
3 simp1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴𝐵 ) → 𝐴 ∈ ℂ )
4 simp2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴𝐵 ) → 𝐵 ∈ ℂ )
5 simp3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴𝐵 ) → 𝐴𝐵 )
6 3 4 5 subne0d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴𝐵 ) → ( 𝐴𝐵 ) ≠ 0 )
7 2 6 absrpcld ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐴𝐵 ) ) ∈ ℝ+ )