Description: The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | abssubrp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
3 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ℂ ) | |
4 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ℂ ) | |
5 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) | |
6 | 3 4 5 | subne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐵 ) ≠ 0 ) |
7 | 2 6 | absrpcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ+ ) |