| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
⊢ 2 ∈ ℝ |
| 2 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 2 ∈ ℝ ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 5 |
4
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 6 |
3 5
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ∈ ℂ ) |
| 7 |
6
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 8 |
2 7
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ∈ ℝ ) |
| 9 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 10 |
3 9
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 11 |
|
abscl |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 12 |
4 11
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 13 |
10 12
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ∈ ℝ ) |
| 14 |
2 13
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 15 |
10
|
resqcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 16 |
12
|
resqcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ) |
| 17 |
15 16
|
readdcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ∈ ℝ ) |
| 18 |
|
releabs |
⊢ ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ∈ ℂ → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 19 |
6 18
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 20 |
|
absmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ) → ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ ( ∗ ‘ 𝐵 ) ) ) ) |
| 21 |
3 5 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ ( ∗ ‘ 𝐵 ) ) ) ) |
| 22 |
|
abscj |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐵 ) ) = ( abs ‘ 𝐵 ) ) |
| 23 |
4 22
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( ∗ ‘ 𝐵 ) ) = ( abs ‘ 𝐵 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ ( ∗ ‘ 𝐵 ) ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
| 25 |
21 24
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
| 26 |
19 25
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
| 27 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 28 |
27
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 2 ∈ ℝ+ ) |
| 29 |
7 13 28
|
lemul2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ↔ ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ≤ ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) ) |
| 30 |
26 29
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ≤ ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) |
| 31 |
8 14 17 30
|
leadd2dd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) ) |
| 32 |
|
sqabsadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ) ) |
| 33 |
10
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 34 |
12
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 35 |
|
binom2 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐵 ) ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 36 |
33 34 35
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 37 |
15
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 38 |
14
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 39 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 40 |
37 38 39
|
add32d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) ) |
| 41 |
36 40
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) ) |
| 42 |
31 32 41
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) ≤ ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) ) |
| 43 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 44 |
|
abscl |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 + 𝐵 ) ) ∈ ℝ ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + 𝐵 ) ) ∈ ℝ ) |
| 46 |
10 12
|
readdcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ∈ ℝ ) |
| 47 |
|
absge0 |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → 0 ≤ ( abs ‘ ( 𝐴 + 𝐵 ) ) ) |
| 48 |
43 47
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ≤ ( abs ‘ ( 𝐴 + 𝐵 ) ) ) |
| 49 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 50 |
3 49
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 51 |
|
absge0 |
⊢ ( 𝐵 ∈ ℂ → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 52 |
4 51
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 53 |
10 12 50 52
|
addge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |
| 54 |
45 46 48 53
|
le2sqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↔ ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) ≤ ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 55 |
42 54
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |