Metamath Proof Explorer


Theorem abstrid

Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 ( 𝜑𝐴 ∈ ℂ )
abssubd.2 ( 𝜑𝐵 ∈ ℂ )
Assertion abstrid ( 𝜑 → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 abscld.1 ( 𝜑𝐴 ∈ ℂ )
2 abssubd.2 ( 𝜑𝐵 ∈ ℂ )
3 abstri ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) )