Metamath Proof Explorer
Description: Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypothesis |
abscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
Assertion |
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
absvalsq |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |