Metamath Proof Explorer


Theorem absvalsqi

Description: Square of value of absolute value function. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypothesis absvalsqi.1 𝐴 ∈ ℂ
Assertion absvalsqi ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 absvalsqi.1 𝐴 ∈ ℂ
2 absvalsq ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
3 1 2 ax-mp ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) )