Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
2 |
1
|
bicomd |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) ) |
4 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
5 |
|
znegclb |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) |
7 |
|
eleq1 |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) |
8 |
7
|
bibi2d |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ↔ ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) ) |
9 |
6 8
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) ) |
10 |
|
absor |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
11 |
3 9 10
|
mpjaod |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) |