Metamath Proof Explorer


Theorem absz

Description: A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absz ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℤ ↔ 𝐴 ∈ ℤ ) )
2 1 bicomd ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) )
3 2 a1i ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) )
4 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
5 znegclb ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) )
6 4 5 syl ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) )
7 eleq1 ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℤ ↔ - 𝐴 ∈ ℤ ) )
8 7 bibi2d ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ↔ ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) )
9 6 8 syl5ibrcom ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) )
10 absor ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) )
11 3 9 10 mpjaod ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) )