| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
| 2 |
1
|
bicomd |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) |
| 3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) ) |
| 4 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 5 |
|
znegclb |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) |
| 7 |
|
eleq1 |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) |
| 8 |
7
|
bibi2d |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ↔ ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) ) |
| 9 |
6 8
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) ) |
| 10 |
|
absor |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 11 |
3 9 10
|
mpjaod |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) |