Step |
Hyp |
Ref |
Expression |
1 |
|
dfcleq |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
2 |
|
vextru |
⊢ 𝑦 ∈ { 𝑥 ∣ ⊤ } |
3 |
2
|
tbt |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
4 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
5 |
3 4
|
bitr3i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
7 |
1 6
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
8 |
|
dfv2 |
⊢ V = { 𝑥 ∣ ⊤ } |
9 |
8
|
eqeq2i |
⊢ ( { 𝑥 ∣ 𝜑 } = V ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ) |
10 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
11 |
10
|
sb8v |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
12 |
7 9 11
|
3bitr4i |
⊢ ( { 𝑥 ∣ 𝜑 } = V ↔ ∀ 𝑥 𝜑 ) |