Metamath Proof Explorer


Theorem abv

Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication ( bj-abv ) requires fewer axioms. (Contributed by BJ, 19-Mar-2021) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024) (Proof shortened by BJ, 30-Aug-2024)

Ref Expression
Assertion abv ( { 𝑥𝜑 } = V ↔ ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 dfcleq ( { 𝑥𝜑 } = { 𝑥 ∣ ⊤ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) )
2 vextru 𝑦 ∈ { 𝑥 ∣ ⊤ }
3 2 tbt ( 𝑦 ∈ { 𝑥𝜑 } ↔ ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) )
4 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
5 3 4 bitr3i ( ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ↔ [ 𝑦 / 𝑥 ] 𝜑 )
6 5 albii ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
7 1 6 bitri ( { 𝑥𝜑 } = { 𝑥 ∣ ⊤ } ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
8 dfv2 V = { 𝑥 ∣ ⊤ }
9 8 eqeq2i ( { 𝑥𝜑 } = V ↔ { 𝑥𝜑 } = { 𝑥 ∣ ⊤ } )
10 nfv 𝑦 𝜑
11 10 sb8v ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
12 7 9 11 3bitr4i ( { 𝑥𝜑 } = V ↔ ∀ 𝑥 𝜑 )