Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abv0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | abv0 | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 0 ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abv0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 1 | abvrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) | 
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | 4 2 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) | 
| 6 | 3 5 | syl | ⊢ ( 𝐹 ∈ 𝐴 → 0 ∈ ( Base ‘ 𝑅 ) ) | 
| 7 | eqid | ⊢ 0 = 0 | |
| 8 | 1 4 2 | abveq0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 0 ) = 0 ↔ 0 = 0 ) ) | 
| 9 | 7 8 | mpbiri | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 0 ) = 0 ) | 
| 10 | 6 9 | mpdan | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 0 ) = 0 ) |