Metamath Proof Explorer


Theorem abv0

Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abv0.a 𝐴 = ( AbsVal ‘ 𝑅 )
abv0.z 0 = ( 0g𝑅 )
Assertion abv0 ( 𝐹𝐴 → ( 𝐹0 ) = 0 )

Proof

Step Hyp Ref Expression
1 abv0.a 𝐴 = ( AbsVal ‘ 𝑅 )
2 abv0.z 0 = ( 0g𝑅 )
3 1 abvrcl ( 𝐹𝐴𝑅 ∈ Ring )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 4 2 ring0cl ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) )
6 3 5 syl ( 𝐹𝐴0 ∈ ( Base ‘ 𝑅 ) )
7 eqid 0 = 0
8 1 4 2 abveq0 ( ( 𝐹𝐴0 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹0 ) = 0 ↔ 0 = 0 ) )
9 7 8 mpbiri ( ( 𝐹𝐴0 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹0 ) = 0 )
10 6 9 mpdan ( 𝐹𝐴 → ( 𝐹0 ) = 0 )