Description: The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abv1.p | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | abv1 | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) → ( 𝐹 ‘ 1 ) = 1 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abv1.p | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | id | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ 𝐴 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 5 | 4 2 | drngunz | ⊢ ( 𝑅 ∈ DivRing → 1 ≠ ( 0g ‘ 𝑅 ) ) | 
| 6 | 1 2 4 | abv1z | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 1 ) = 1 ) | 
| 7 | 3 5 6 | syl2anr | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) → ( 𝐹 ‘ 1 ) = 1 ) |