Description: The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
abv1.p | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
Assertion | abv1 | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) → ( 𝐹 ‘ 1 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
2 | abv1.p | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
3 | id | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ 𝐴 ) | |
4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
5 | 4 2 | drngunz | ⊢ ( 𝑅 ∈ DivRing → 1 ≠ ( 0g ‘ 𝑅 ) ) |
6 | 1 2 4 | abv1z | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 1 ) = 1 ) |
7 | 3 5 6 | syl2anr | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) → ( 𝐹 ‘ 1 ) = 1 ) |