| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abv0.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑅 ) | 
						
							| 2 |  | abv1.p | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | abv1z.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 | 1 | abvrcl | ⊢ ( 𝐹  ∈  𝐴  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 | 5 2 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝐹  ∈  𝐴  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 8 | 1 5 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘  1  )  ∈  ℝ ) | 
						
							| 9 | 7 8 | mpdan | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹 ‘  1  )  ∈  ℝ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( 𝐹 ‘  1  )  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( 𝐹 ‘  1  )  ∈  ℂ ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  𝐹  ∈  𝐴 ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →   1   ≠   0  ) | 
						
							| 15 | 1 5 3 | abvne0 | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ∈  ( Base ‘ 𝑅 )  ∧   1   ≠   0  )  →  ( 𝐹 ‘  1  )  ≠  0 ) | 
						
							| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( 𝐹 ‘  1  )  ≠  0 ) | 
						
							| 17 | 11 11 16 | divcan3d | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( ( ( 𝐹 ‘  1  )  ·  ( 𝐹 ‘  1  ) )  /  ( 𝐹 ‘  1  ) )  =  ( 𝐹 ‘  1  ) ) | 
						
							| 18 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 19 | 5 18 2 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧   1   ∈  ( Base ‘ 𝑅 ) )  →  (  1  ( .r ‘ 𝑅 )  1  )  =   1  ) | 
						
							| 20 | 4 13 19 | syl2an2r | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  (  1  ( .r ‘ 𝑅 )  1  )  =   1  ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( 𝐹 ‘ (  1  ( .r ‘ 𝑅 )  1  ) )  =  ( 𝐹 ‘  1  ) ) | 
						
							| 22 | 1 5 18 | abvmul | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ∈  ( Base ‘ 𝑅 )  ∧   1   ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ (  1  ( .r ‘ 𝑅 )  1  ) )  =  ( ( 𝐹 ‘  1  )  ·  ( 𝐹 ‘  1  ) ) ) | 
						
							| 23 | 12 13 13 22 | syl3anc | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( 𝐹 ‘ (  1  ( .r ‘ 𝑅 )  1  ) )  =  ( ( 𝐹 ‘  1  )  ·  ( 𝐹 ‘  1  ) ) ) | 
						
							| 24 | 21 23 | eqtr3d | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( 𝐹 ‘  1  )  =  ( ( 𝐹 ‘  1  )  ·  ( 𝐹 ‘  1  ) ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( ( 𝐹 ‘  1  )  /  ( 𝐹 ‘  1  ) )  =  ( ( ( 𝐹 ‘  1  )  ·  ( 𝐹 ‘  1  ) )  /  ( 𝐹 ‘  1  ) ) ) | 
						
							| 26 | 11 16 | dividd | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( ( 𝐹 ‘  1  )  /  ( 𝐹 ‘  1  ) )  =  1 ) | 
						
							| 27 | 25 26 | eqtr3d | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( ( ( 𝐹 ‘  1  )  ·  ( 𝐹 ‘  1  ) )  /  ( 𝐹 ‘  1  ) )  =  1 ) | 
						
							| 28 | 17 27 | eqtr3d | ⊢ ( ( 𝐹  ∈  𝐴  ∧   1   ≠   0  )  →  ( 𝐹 ‘  1  )  =  1 ) |