Metamath Proof Explorer
Description: An absolute value is a function from the ring to the real numbers.
(Contributed by Mario Carneiro, 8-Sep-2014)
|
|
Ref |
Expression |
|
Hypotheses |
abvf.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
|
|
abvf.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
Assertion |
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abvf.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvf.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
1 2
|
abvf |
⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : 𝐵 ⟶ ℝ ) |
4 |
3
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |