Metamath Proof Explorer
		
		
		
		Description:  An absolute value is a function from the ring to the real numbers.
       (Contributed by Mario Carneiro, 8-Sep-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | abvf.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑅 ) | 
					
						|  |  | abvf.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
				
					|  | Assertion | abvcl | ⊢  ( ( 𝐹  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ∈  ℝ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abvf.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑅 ) | 
						
							| 2 |  | abvf.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 | 1 2 | abvf | ⊢ ( 𝐹  ∈  𝐴  →  𝐹 : 𝐵 ⟶ ℝ ) | 
						
							| 4 | 3 | ffvelcdmda | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ∈  ℝ ) |