Metamath Proof Explorer


Theorem abvcl

Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a 𝐴 = ( AbsVal ‘ 𝑅 )
abvf.b 𝐵 = ( Base ‘ 𝑅 )
Assertion abvcl ( ( 𝐹𝐴𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 abvf.a 𝐴 = ( AbsVal ‘ 𝑅 )
2 abvf.b 𝐵 = ( Base ‘ 𝑅 )
3 1 2 abvf ( 𝐹𝐴𝐹 : 𝐵 ⟶ ℝ )
4 3 ffvelrnda ( ( 𝐹𝐴𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ ℝ )