Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvneg.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abvrec.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
abvdiv.p |
⊢ / = ( /r ‘ 𝑅 ) |
5 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝐹 ∈ 𝐴 ) |
6 |
|
simpr1 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑅 ∈ DivRing ) |
8 |
|
simpr2 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ∈ 𝐵 ) |
9 |
|
simpr3 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ≠ 0 ) |
10 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
11 |
2 3 10
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
12 |
7 8 9 11
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
14 |
1 2 13
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
15 |
5 6 12 14
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
16 |
1 2 3 10
|
abvrec |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) |
17 |
16
|
3adantr1 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) |
18 |
17
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) ) |
19 |
15 18
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) ) |
20 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
21 |
2 20 3
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( 𝑌 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) ) |
22 |
7 21
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑌 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) ) |
23 |
8 9 22
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ∈ ( Unit ‘ 𝑅 ) ) |
24 |
2 13 20 10 4
|
dvrval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
25 |
6 23 24
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
26 |
25
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
27 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
28 |
5 6 27
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
30 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
31 |
5 8 30
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
32 |
31
|
recnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℂ ) |
33 |
1 2 3
|
abvne0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → ( 𝐹 ‘ 𝑌 ) ≠ 0 ) |
34 |
5 8 9 33
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ≠ 0 ) |
35 |
29 32 34
|
divrecd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) / ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) ) |
36 |
19 26 35
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐹 ‘ 𝑌 ) ) ) |