Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvneg.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abvrec.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
abvdom.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
simp1 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝐹 ∈ 𝐴 ) |
6 |
|
simp2l |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simp3l |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ∈ 𝐵 ) |
8 |
1 2 4
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ 𝑌 ) ) ) |
9 |
5 6 7 8
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ 𝑌 ) ) ) |
10 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
11 |
5 6 10
|
syl2anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
13 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
14 |
5 7 13
|
syl2anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℂ ) |
16 |
|
simp2r |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑋 ≠ 0 ) |
17 |
1 2 3
|
abvne0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
18 |
5 6 16 17
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
19 |
|
simp3r |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ≠ 0 ) |
20 |
1 2 3
|
abvne0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → ( 𝐹 ‘ 𝑌 ) ≠ 0 ) |
21 |
5 7 19 20
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ≠ 0 ) |
22 |
12 15 18 21
|
mulne0d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ 𝑌 ) ) ≠ 0 ) |
23 |
9 22
|
eqnetrd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ≠ 0 ) |
24 |
1 3
|
abv0 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 0 ) = 0 ) |
25 |
5 24
|
syl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 0 ) = 0 ) |
26 |
|
fveqeq2 |
⊢ ( ( 𝑋 · 𝑌 ) = 0 → ( ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = 0 ↔ ( 𝐹 ‘ 0 ) = 0 ) ) |
27 |
25 26
|
syl5ibrcom |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝑋 · 𝑌 ) = 0 → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = 0 ) ) |
28 |
27
|
necon3d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ≠ 0 → ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
29 |
23 28
|
mpd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |