Step |
Hyp |
Ref |
Expression |
1 |
|
abvf.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvf.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abveq0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
1
|
abvrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
1 2 5 6 3
|
isabv |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
8 |
4 7
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
10 |
|
simpl |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
12 |
9 11
|
simpl2im |
⊢ ( 𝐹 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
13 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 𝑋 ) = 0 ) ) |
14 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) |
15 |
13 14
|
bibi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) ) |
16 |
15
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) |
17 |
12 16
|
sylan |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) |