Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | abvf | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : 𝐵 ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | 1 2 | abvfge0 | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ) |
| 4 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 5 | fss | ⊢ ( ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : 𝐵 ⟶ ℝ ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : 𝐵 ⟶ ℝ ) |