Metamath Proof Explorer


Theorem abvf

Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a 𝐴 = ( AbsVal ‘ 𝑅 )
abvf.b 𝐵 = ( Base ‘ 𝑅 )
Assertion abvf ( 𝐹𝐴𝐹 : 𝐵 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 abvf.a 𝐴 = ( AbsVal ‘ 𝑅 )
2 abvf.b 𝐵 = ( Base ‘ 𝑅 )
3 1 2 abvfge0 ( 𝐹𝐴𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) )
4 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
5 fss ( ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : 𝐵 ⟶ ℝ )
6 3 4 5 sylancl ( 𝐹𝐴𝐹 : 𝐵 ⟶ ℝ )