Step |
Hyp |
Ref |
Expression |
1 |
|
abvf.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvf.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
1
|
abvrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
7 |
1 2 4 5 6
|
isabv |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
8 |
3 7
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
10 |
9
|
simpld |
⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ) |