Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
abvf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
Assertion | abvge0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
2 | abvf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
3 | 1 2 | abvfge0 | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ) |
4 | 3 | ffvelrnda | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 0 [,) +∞ ) ) |
5 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑋 ) ) ) | |
6 | 5 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( 𝐹 ‘ 𝑋 ) ) |
7 | 4 6 | syl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ 𝑋 ) ) |