Metamath Proof Explorer


Theorem abvgt0

Description: The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a 𝐴 = ( AbsVal ‘ 𝑅 )
abvf.b 𝐵 = ( Base ‘ 𝑅 )
abveq0.z 0 = ( 0g𝑅 )
Assertion abvgt0 ( ( 𝐹𝐴𝑋𝐵𝑋0 ) → 0 < ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 abvf.a 𝐴 = ( AbsVal ‘ 𝑅 )
2 abvf.b 𝐵 = ( Base ‘ 𝑅 )
3 abveq0.z 0 = ( 0g𝑅 )
4 1 2 abvcl ( ( 𝐹𝐴𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ ℝ )
5 4 3adant3 ( ( 𝐹𝐴𝑋𝐵𝑋0 ) → ( 𝐹𝑋 ) ∈ ℝ )
6 1 2 abvge0 ( ( 𝐹𝐴𝑋𝐵 ) → 0 ≤ ( 𝐹𝑋 ) )
7 6 3adant3 ( ( 𝐹𝐴𝑋𝐵𝑋0 ) → 0 ≤ ( 𝐹𝑋 ) )
8 1 2 3 abvne0 ( ( 𝐹𝐴𝑋𝐵𝑋0 ) → ( 𝐹𝑋 ) ≠ 0 )
9 5 7 8 ne0gt0d ( ( 𝐹𝐴𝑋𝐵𝑋0 ) → 0 < ( 𝐹𝑋 ) )