Step |
Hyp |
Ref |
Expression |
1 |
|
abvn0b.b |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
8 |
3 6 4
|
domnmuln0 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) |
9 |
1 3 4 5 6 7 8
|
abvtrivd |
⊢ ( 𝑅 ∈ Domn → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) ∈ 𝐴 ) |
10 |
9
|
ne0d |
⊢ ( 𝑅 ∈ Domn → 𝐴 ≠ ∅ ) |
11 |
2 10
|
jca |
⊢ ( 𝑅 ∈ Domn → ( 𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅ ) ) |
12 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
13 |
|
neanior |
⊢ ( ( 𝑦 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ↔ ¬ ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) |
14 |
|
an4 |
⊢ ( ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑦 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) ↔ ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) ) |
15 |
1 3 4 6
|
abvdom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) |
16 |
15
|
3expib |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
17 |
14 16
|
syl5bi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑦 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
18 |
17
|
expdimp |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
19 |
13 18
|
syl5bir |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ¬ ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
20 |
19
|
necon4bd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
21 |
20
|
ralrimivva |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
22 |
21
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
23 |
12 22
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
24 |
23
|
anim2i |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅ ) → ( 𝑅 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) ) |
25 |
3 6 4
|
isdomn |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) ) |
26 |
24 25
|
sylibr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅ ) → 𝑅 ∈ Domn ) |
27 |
11 26
|
impbii |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅ ) ) |